首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14950篇
  免费   2161篇
  国内免费   4091篇
测绘学   415篇
大气科学   2375篇
地球物理   1775篇
地质学   6899篇
海洋学   2314篇
天文学   6028篇
综合类   594篇
自然地理   802篇
  2024年   43篇
  2023年   164篇
  2022年   375篇
  2021年   389篇
  2020年   458篇
  2019年   569篇
  2018年   476篇
  2017年   419篇
  2016年   478篇
  2015年   556篇
  2014年   898篇
  2013年   894篇
  2012年   932篇
  2011年   1077篇
  2010年   1103篇
  2009年   1461篇
  2008年   1374篇
  2007年   1409篇
  2006年   1314篇
  2005年   1096篇
  2004年   996篇
  2003年   839篇
  2002年   664篇
  2001年   565篇
  2000年   526篇
  1999年   477篇
  1998年   375篇
  1997年   203篇
  1996年   189篇
  1995年   177篇
  1994年   156篇
  1993年   115篇
  1992年   70篇
  1991年   68篇
  1990年   44篇
  1989年   33篇
  1988年   34篇
  1987年   11篇
  1986年   18篇
  1985年   28篇
  1984年   23篇
  1983年   17篇
  1982年   17篇
  1981年   13篇
  1980年   11篇
  1978年   5篇
  1977年   18篇
  1976年   7篇
  1973年   4篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
62.
The approach proposed in the previous parts of this series of papers is used to solve the radiative transfer problem in scattering and absorbing multicomponent atmospheres. Linear recurrence relations are obtained for both the reflectance and transmittance of these kinds of atmospheres, as well as for the emerging intensities when the atmosphere contains energy sources. Spectral line formation in a one-dimensional inhomogeneous atmosphere is examined as an illustration of the possibility of generalizing our approach to the matrix case. It is shown that, in this case as well, the question reduces to solving an initial value problem for linear differential equations. Some numerical calculations are presented.  相似文献   
63.
64.
65.
The star WR 7a, also known as SPH 2, has a spectrum that resembles that of V Sagittae stars although no O  vi emission has been reported. The Temporal Variance Spectrum – TVS – analysis of our data shows weak but strongly variable emission of O  vi lines which is below the noise level in the intensity spectrum.
Contrary to what is seen in V Sagittae stars, optical photometric monitoring shows very little, if any, flickering. We found evidence of periodic variability. The most likely photometric period is   P phot= 0.227(±14) d  , while radial velocities suggest a period of   P spec= 0.204(±13) d  . One-day aliases of these periods can not be ruled out. We call attention to similarities with HD 45166 and DI Cru (= WR 46), where multiple periods are present. They may be associated to the binary motion or to non-radial oscillations.
In contrast to a previous conclusion by Pereira et al., we show that WR 7a contains hydrogen. The spectrum of the primary star seems to be detectable as the N  v 4604 Å  absorption line is visible. If so, it means that the wind is optically thin in the continuum and that it is likely to be a helium main sequence star.
Given the similarity to HD 45166, we suggests that WR 7a may be a qWR – quasi Wolf–Rayet – star. Its classification is WN4h/CE in the Smith, Shara & Moffat three-dimensional classification system.  相似文献   
66.
67.
We present the results of a systematic investigation of spectral evolution in the Z source GX 349+2, using data obtained during 1998 with the Proportional Counter Array (PCA) on-board the RXTE satellite. The source traced a extended normal branch (NB) and flaring branch (FB) in the colour–colour diagram (CD) and the hardness-intensity diagram (HID) during these observations. The spectra at different positions of the Z-track were best fitted by a model consisting of a disc blackbody and a Comptonized spectrum. A broad (Gaussian) iron line at ∼6.7 keV is also required to improve the fit. The spectral parameters showed a systematic and significant variation with the position along the Z-track. The evolution in spectral parameters is discussed in view of the increasing mass accretion rate scenario, proposed to explain the motion of Z sources in the CD and the HID.  相似文献   
68.
We investigate the role of seasonal variations of Titan’s stratospheric composition on the temperature. We use a general circulation model coupled with idealized chemical tracers that reproduce variations of ethane (C2H6), acetylene (C2H2), and hydrogen cyanide (HCN). Enhancement of the mole fractions of these compounds, at high latitudes in the winter hemisphere relative to their equatorial values, induces a relative decrease in temperature above approximately 0.2 mbar, with a peak amplitude around −20 K, and a relative increase in temperature below, around 1 mbar, with a peak amplitude around +7 K. These thermal effects are mainly due to the variations of the cooling to space induced by the varying distributions. The ethane, acetylene, and hydrogen cyanide variations affect the cooling rates in a similar way, with the dominant effect being due to ethane, though its latitudinal variations are small.  相似文献   
69.
We examine possible locations for the primordial disk of the Edgeworth-Kuiper Belt (EKB), using several subsets of the known objects as markers of the total mass distribution. Using a secular perturbation theory, we find that the primordial plane of the EKB could have remained thin enough to escape detection only if it is clustered very closely about the invariable plane of the Solar System.  相似文献   
70.
Photometric observations of Pluto in the BVR filter system were obtained in 1999 and in 1990-1993, and observations in the 0.89-μm methane absorption band were obtained in 2000. Our 1999 observations yield lightcurve amplitudes of 0.30 ± 0.01, 0.26 ± 0.01, and 0.21 ± 0.02 and geometric albedos of 0.44 ± 0.04, 0.52 ± 0.03, and 0.58 ± 0.02 in the B, V, and R filters, respectively. The low-albedo hemisphere of Pluto is slightly redder than the higher albedo hemisphere. A comparison of our results and those from previous epochs shows that the lightcurve of Pluto changes substantially through time. We developed a model that fully accounts for changes in the lightcurve caused by changes in the viewing geometry between the Earth, Pluto, and the Sun. We find that the observed changes in the amplitude of Pluto’s lightcurve can be explained by viewing geometry rather than by volatile transport. We also discovered a measurable decrease since 1992 of ∼0.03 magnitudes in the amplitude of Pluto’s lightcurve, as the model predicts. Pluto’s geometric albedo does not appear to be currently increasing, as our model predicts, although given the uncertainties in both the model and the measurements of geometric albedo, this result is not firm evidence for volatile transport. The maximum of methane-absorption lightcurve occurs near the minimum of the BVR lightcurves. This result suggests that methane is more abundant in the brightest regions of Pluto. Pluto’s phase coefficient exhibits a color dependence, ranging from 0.037 ± 0.01 in the B filter to 0.032 ± 0.01 in the R filter. Pluto’s phase curve is most like those of the bright, recently resurfaced satellites Triton and Europa. Although Pluto shows no strong evidence for volatile transport now (unlike Triton), it is important to continue to observe Pluto as it moves away from perihelion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号